### МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

### КОНСТРУКЦИИ ДЕРЕВЯННЫЕ

Методы определения несущей способности узловых соединений

Timber structures. Methods of determining the bearing capacity of the joints

MKC 91.080.20

Дата введения 2025-06-01

### Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственно стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

### Сведения о стандарте

- 1 РАЗРАБОТАН Центральным научно-исследовательским, проектно-конструкторским и технологическим институтом им.В.А.Кучеренко (ЦНИИСК им.В.А.Кучеренко), отделением А "НИЦ "Строительство"
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 ноября 2024 г. № 179-П)

За принятие проголосовали:

| Краткое наименование страны<br>по МК (ИСО 3166) 004-97 | Код страны по МК<br>(ИСО 3166) 004-97 | Сокращенное наименование национального органа по стандартизации |               |       |    |  |
|--------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|---------------|-------|----|--|
|                                                        |                                       | 3AO                                                             | "Национальный | орган | ПО |  |

| Армения    | АМ | стандартизации и метрологии" Республики<br>Армения |
|------------|----|----------------------------------------------------|
| Россия     | RU | Росстандарт                                        |
| Узбекистан | UZ | Узбекское агентство по техническому регулированию  |

4 Приказом Федерального агентства по техническому регулированию и метрологии от 5 декабря 2024 г. № 1850-ст межгосударственный стандарт ГОСТ 33082-2024 введен в действие в качеств национального стандарта Российской Федерации с 1 июня 2025 г.

#### 5 B3AMEH ΓΟCT 33082-2014

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

#### Введение

Цель разработки настоящего стандарта - установление единых требований к методам испытаний узловых соединений деревянных конструкций, применяемых при проектировании и изготовлени строительных конструкций различного назначения.

Положения настоящего стандарта учитывают требования, содержащиеся в [1] и [2].

Регламентированные настоящим стандартом требования к испытаниям следует использовать при проведении испытаний новых проектных решений соединений, при их экспериментальной проверке, а также для контрольных испытаний соединений ответственных конструкций с целью проверки правильности расчетных предпосылок, технологичности и качества изготовления.

Настоящий стандарт разработан авторским коллективом АО "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко (заведующий лабораторией и руководитель работы - канд.техн. нау П.Н.Смирнов, ответственный исполнитель - канд.техн. наук Ю.Ю.Славик).

### 1 Область применения

1.1 Настоящий стандарт распространяется на деревянные конструкции, воспринимающие при эксплуатации статические нагрузки, и устанавливает общие требования к метода кратковременных испытаний узловых соединений элементов конструкций (далее - соединения) с различными свойствами деформирования под нагрузкой при определении их несущей

способности, жесткости и пластичности.

- 1.2 Регламентированные настоящим стандартом испытания следует использовать для типовых и новых проектных решений соединений при их экспериментальной проверке, а также для контрольных испытаний соединений ответственных конструкций с целью проверки правильности расчетных предпосылок, технологичности и качества изготовления соединений.
- 1.3 Положения настоящего стандарта учитывают требования, содержащиеся в [1].

### 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственны стандарты:

ГОСТ 166 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427 Линейки измерительные металлические. Технические условия

ГОСТ 577 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия

ГОСТ 3749 Угольники поверочные 90°. Технические условия

ГОСТ 6507 Микрометры. Технические условия

ГОСТ 8486 Пиломатериалы хвойных пород. Технические условия

ГОСТ 16588 (ИСО 4470-81) Пилопродукция и деревянные детали. Методы определения влажности

ГОСТ 18288 Производство лесопильное. Термины и определения

ГОСТ 20850 Конструкции деревянные клееные несущие. Общие технические условия

ГОСТ 26242 Системы числового программного управления. Преобразователи перемещений. Общие технические условия

ГОСТ 28840 Машины для испытания материалов на растяжение, сжатие и изгиб. Общие технические требования

ГОСТ 33080 Конструкции деревянные. Классы прочности конструкционных пиломатериалов и методы их определения

ГОСТ 33081 Конструкции деревянные клееные несущие. Классы прочности элементов конструкций и методы их определения

ГОСТ 33120 Конструкции деревянные клееные. Метод определения прочности клеевых соединений

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственног совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателя национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этог

документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, т это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эт ссылку.

### 3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 18288, ГОСТ 20850, нормативны документам 1), действующим на территории государства - участника Соглашения, принявшего настоящий стандарт, а также следующие термины с соответствующими определениями:

- 1) В Российской Федерации действует ГОСТ Р 56705-2015 "Конструкции деревянные для строительства. Термины и определения".
- 3.1 соединение деревянной конструкции: Часть конструкции, соединяющая ее элементы и выполняющая определенные несущие функции.
- 3.2 несущая способность соединения: Предельные величины усилия (нагрузки) и деформаций, при которых не происходят разрушение или недопустимые деформации соединения.
- 3.3 эксплуатационная несущая способность соединения: Несущая способность с учетом величины и продолжительности действия эксплуатационных нагрузок.
- 3.4 деформирование узлового соединения: Зависимость взаимного смещения соединяемых элементов соединения от величины нагрузки.
- 3.5 нагельное узловое соединение: Соединение элементов узла с помощью нагелей из различных материалов цилиндрической или другой формы, устанавливаемых в сверленые или фрезерованные гнезда или вдавливаемых в древесину.
- 3.6 упругая деформация соединения: Величина взаимного смещения элементов соединения, линейно зависящая от нагрузки.
- 3.7 остаточная деформация соединения: Сохранившаяся величина взаимного смещения элементов соединения при одном или нескольких циклах приложения нагрузки на соединение после полног ее снятия.
- 3.8 жесткость соединения: Зависимость между нагрузкой и деформациями взаимного смещения соединяемых элементов в упругой зоне работы соединения.
- 3.9 пластичность соединения: Отношение между деформациями взаимного смещения соединяемых элементов соединения при максимальной нагрузке и деформациями при пределе упругой работы.
- 3.10 расчетная несущая способность соединения: Несущая способность испытанного соединения для режима нагружения A (линейно возрастающая нагрузка при стандартных машинных испытаниях) согласно приложению A нормативного документа  $^{2)}$ , действующего на территории государства участника Соглашения, принявшего настоящий стандарт.

-----

<sup>2)</sup> В Российской Федерации действует СП 64.13330.2017 "Актуализированная редакция СНиП II-25-80 Деревянные конструкции (с изменениями № 1, 2, 3)".

#### 4 Обозначения

В настоящем стандарте применены основные обозначения согласно нормативным документам  $^{3)}$  действующим на территории государства - участника Соглашения, принявшего настоящий стандарт.

-----

### 5 Общие положения

- 5.1 Требования стандарта распространяются на узлы деревянных конструкций с применением различных типов соединений деревянных элементов:
- клеевых (соединения древесины по пласти, зубчатые соединения, соединения на вклеенных и клеевинтовых металлических стержнях, в том числе с металлическими соединительными деталями);
- соединений на врубках;
- нагельных соединений (на цилиндрических и пластинчатых нагелях);
- соединений на механических связях (при помощи болтов, гвоздей, винтов, шурупов);
- соединений на шпонках (на деревянных пластинчатых и цилиндрических, металлических кольцевых и зубчатых);
- соединений на металлических зубчатых пластинах (МЗП) и металлических нагельных пластинах.
- 5.2 Испытания соединений предусматривают доведение их до разрушения испытательной нагрузкой с последующим определением их фактической экспериментальной несущей способности и сопоставление ее с контрольной несущей способностью, полученной по результатам расчетов.
- 5.3 В процессе проведения испытаний и анализа их результатов необходимо учитыват следующие группы и виды разрушения соединений.
- 5.4 Соединения деревянных конструкций по виду зависимости упругой деформации о прилагаемой нагрузки в диапазоне расчетной несущей способности подразделяют на две группы:
- I соединения с линейной зависимостью упругой деформации от нагрузки;
- II соединения с нелинейной зависимостью упругой деформации от нагрузки.
- 5.5 К группе I относят соединения: клеевые различных видов, в т.ч. на вклеенных и клеевинтовых металлических стержнях; на врубках; на деревянных цилиндрических и пластинчатых нагелях; на различных шпонках и вкладышах и т.п.
- 5.6 К группе II относят соединения: на металлических и пластмассовых нагелях в сверленые и

<sup>3)</sup> В Российской Федерации действует СП 64.13330.2017 "Актуализированная редакция СНиП II-25-80 Деревянные конструкции (с изменениями № 1, 2, 3)", (приложения Р, таблица Р.1).

гнезда; на гвоздях, шурупах и винтах, на МЗП, шайбах, кольцах и др., вдавливаемых в древесину.

- 5.7 Соединения деревянных конструкций подразделяют на соединения группы I, группы II и смешанные, в которых присутствуют соединения и I, и II групп.
- 5.8 Разрушения соединений подразделяют на два вида: пластическое и хрупкое. Если разрушение соединения при нагружении за пределом упругой работы Ne происходит с развитием нелинейных деформаций и их непрерывным ростом с незначительным увеличением нагрузки или без изменения ее величины, то разрушение относят к пластическому виду, а с незначительным ростом нелинейных деформаций и резким падением нагрузки к хрупкому виду.

Соединения деревянных конструкций в зависимости от величины развития нелинейных деформаций подразделяют на следующие классы пластичности: непластичные, с низко пластичностью, средней пластичностью и высокой пластичностью.

Для оценки класса пластичности соединений следует использовать коэффициент пластичности ц, который определяется как отношение между деформациями сдвига при максимальной нагрузке и деформациями при пределе упругой работы.

Значения коэффициента пластичности в зависимости от класса пластичности приведены в таблице 1.

#### Таблица 1

| Классы пластичности соединений и соответствующие им значения ц |                     |                      |                      |  |  |  |  |  |  |
|----------------------------------------------------------------|---------------------|----------------------|----------------------|--|--|--|--|--|--|
| Непластичные                                                   | Низкая пластичность | Средняя пластичность | Высокая пластичность |  |  |  |  |  |  |
| $\mu \leq 2$                                                   | 2≤ µ ≤ 4            | 4≤ µ ≤ 6             | μ>6                  |  |  |  |  |  |  |

5.9 К пластическому виду разрушения следует относить разрушения от сжатия, смятия вдоль или поперек волокон в зоне соединительных элементов, происходящие, как правило, в нагельных и других вдавливаемых соединениях, а также разрушение от нелинейного деформирования стальных соединительных деталей и крепежных изделий.

К хрупкому виду разрушения относят разрушение от скалывания вдоль волокон или под углом к волокнам, от раскалывания с отрывом поперек волокон и др. В процессе испытаний разрушение может произойти как по соединению, например по крепежным изделиям или стальным соединительным деталям, так и по древесине за пределами соединения.

- 5.10 При испытаниях следует учитывать временной режим приложения нагрузки, т.к. сопротивление и деформации древесины значительно меняются от продолжительности силовог воздействия, а контрольная разрушающая нагрузка должна быть определена с учето продолжительности действия нагрузки при машинных испытаниях.
- 5.11 Определение несущей способности соединений необходимо осуществлять по схема испытаний образцов, максимально близким к схемам работы соединений в натурны конструкциях.

Для этого необходимо использовать стандартизованные схемы испытаний, приведенные в ГОСТ

33080, ГОСТ 33081, ГОСТ 33120, а также в нормативных документах <sup>1)</sup>, действующих на территории государства - участника Соглашения, принявшего настоящий стандарт.

-----

1) В Российской Федерации действуют ГОСТ Р 57157-2016/EN 1075:1999 "Конструкци деревянные. Методы испытаний соединения на металлических зубчатых пластинах", ГОСТ Р 57183-2016/EN 383:2007 "Конструкции деревянные. Методы определения прочности на смятие и коэффициента жесткости основания для крепежей нагельного типа", ГОСТ Р 58559-2019 "Конструкции деревянные. Металлические зубчатые шпонки. Методы испытаний", ГОСТ Р 58562-2019 "Конструкции деревянные. Металлические кольцевые шпонки. Методы испытаний", ГОСТ Р 56711-2015 "Соединения нагельного типа для деревянных конструкций. Технические условия", ГОСТ Р 56710-2015 "Соединения на вклеенных стержнях для деревянных конструкций. Технические условия", ГОСТ Р 70069-2022 "Металлические зубчатые пластины для соединений элементов деревянных конструкций. Конструкция и размеры. Технические требования", ГОСТ Р 58558-2019 "Конструкции деревянные. Вклеенные стержни. Методы испытаний по определению нормативных значений механических характеристик", СП 64.13330.2017 "Актуализированная редакция СНиП II-25-80\* Деревянные конструкции", ГОСТ Р 57786-2024 "Конструкци деревянные клееные несущие. Визуальная сортировка слоев по классам прочности".

### 6 Методы определения несущей способности соединений

- 6.1 Методы испытаний соединений должны быть назначены в зависимости от следующих поставленных целей:
- детальное изучение новых типов соединений с определением процесса деформирования, их группы, вида разрушения, расчетной несущей способности, жесткости и класса пластичности;
- контрольные испытания соединений с определением их соответствия требованиям по несущей способности;
- определение фактической несущей способности и сопоставление ее с проектными значениями, полученными на основании расчетов;
- определение нормируемых значений несущей способности типовых соединений, необходимы при проектировании конструкций;
- определение расчетной несущей способности соединений для режимов нагружения Б-Ж и К согласно приложению А.
- 6.2 Расчетная несущая способность испытанного соединения II группы, определяемая прочностью и деформативностью деревянных элементов и соединений на нагелях, устанавливается путем деления разрушающей нагрузки или нагрузки, соответствующей верхней границе упругих деформаций, на коэффициент безопасности, учитывающий разброс опытных значений, характер разрушений соединений и продолжительность испытаний.

Расчетная несущая способность испытанного соединения, определяемая прочностью и деформативностью соединительных деталей и крепежных изделий (кроме нагельных) из стали и других материалов, устанавливается путем деления разрушающей нагрузки или нагрузки, соответствующей упругой работе соединения, на коэффициент надежности по материалу для не деревянных частей соединения.

6.3 Приложение нагрузки на образцы и запись деформаций при испытаниях должны проводиться по диаграммам (схемам приложения нагрузки), приведенным в приложении Б настоящег стандарта.

- 6.4 При изучении новых типов соединений испытания следует проводить по схеме ступенчатог приложения нагрузки на образец с разгрузкой (см. рисунки Б.2 и Б.3 ) с записью его деформаций с параметрами по рисунку Б.4.
- 6.5 Остальные методы испытаний соединений (контрольные, определение фактической несущей способности и ее нормативных значений) необходимо осуществлять по схемам с непрерывно возрастающей нагрузкой (см. рисунок Б.1).

### 7 Образцы для проведения испытаний

- 7.1 Для испытаний новых типовых соединений преимущественно используют образцы соединений натурных размеров. Для контрольных испытаний следует использовать образцы в виде фрагментов узлов с проектными размерами. Допускается использовать для образцов физическое моделирование.
- 7.2 Деревянные элементы испытуемых образцов изготавливают из пиломатериалов хвойных пород заданного сорта по ГОСТ 8486 или класса прочности по ГОСТ 33080 с влажностью древесины, установленной в проектной документации. Влажность элементов новых видов соединений или соединений для определения нормативной несущей способности должна быть (12±2)% и измеренной по ГОСТ 16588. Для этого перед испытаниями они должны быть выдержаны в помещении при влажности воздуха (65±5)% и температуре (20±2)°С.

Элементы соединений должны быть изготовлены по требованиям, указанным в рабочих чертежах на конструкции.

7.3 Изготовление образцов соединений должно быть осуществлено с учетом принятых схе испытаний. Схемы испытаний должны быть выбраны для обеспечения работы соединения при основных видах напряженного состояния: растяжении, сжатии, сдвиге, в т.ч. под различными углами между усилием и направлением волокон древесины.

Схема испытаний должна максимально соответствовать действительной работе соединения в конструкции.

7.4 После изготовления образцы перед испытаниями должны быть паспортизованы с детальной фиксацией размеров и схемы испытаний, описанием свойств древесины (влажность, плотность, характеристика годичных колец и др.) и пороков (сучки, трещины и др.).

На каждый образец должна быть нанесена маркировка, указывающая номер и характеристику образца.

- 7.5 При выборе схемы и проведении испытаний особое внимание должно быть уделено передач усилия на образец: при схеме испытаний на сжатие в опорных участках следует использоват стальные опорные подкладки, призмы или шаровые элементы для исключения смятия древесины и обеспечения приложения силы в фиксированные точки; при схеме испытаний на растяжение должно быть исключено проскальзывание образца в захватах испытательной машины путем использования клиновидных захватов, а также вставок или приспособлений, компенсирующи обжатие древесины до 10% по толщине.
- 7.6 Число испытуемых образцов устанавливают в зависимости от целей конкретных испытаний.

При первичных испытаниях новых типов соединений и установлении их несущей способности должно быть испытано не менее трех образцов.

При испытании типовых соединений с целью установления расчетной несущей способности их число должно быть не менее 5 шт. для возможности проведения достоверной статистической обработки результатов испытаний.

Для контрольных испытаний допускается использовать один образец.

7.7 В случае, когда требуется установить расчетную несущую способность соединения с соединительными деталями и крепежными изделиями из стали или других материалов для режимов нагружения Б-Ж, К и Л согласно приложению А, определяемую прочностью и деформативностью древесины, при испытаниях детали и крепежные элементы должны быть усилены, так как коэффициент надежности для деревянных элементов соединения при этих режимах выше, чем для его не деревянных рабочих частей.

При отсутствии возможности усиления соединительных деталей и крепежных изделий или в случае, когда требуется установить наименьшую расчетную несущую способность соединения, определяемую из условия прочности и деформативности деревянных элементов или соединительных деталей и крепежных изделий, испытания необходимо выполнять в два этапа.

На первом этапе должна быть установлена расчетная несущая способность соединения, определяемая прочностью и деформативностью крепежного изделия в деревянном элементе с разрушением по древесине.

На втором этапе должно быть испытано узловое соединение в сборе и установлена его расчетная несущая способность.

Наименьшая из установленных на двух этапах испытаний расчетных значений несущей способности должна приниматься за расчетную несущую способность соединения для режимов нагружения Б-Ж, К и Л согласно приложению А.

## 8 Применяемые оборудование и средства измерения при проведении испытаний

- 8.1 Для проведения испытаний необходимо применять следующие испытательное оборудование, средства измерения и ручной инструмент:
- испытательные машины или стенды, обеспечивающие приложение нагрузки в заданном режиме на испытуемый образец;
- средства измерения: линейных перемещений, деформаций, напряжений, влажности древесины образцов, текущего времени при проведении испытаний, температуры и относительной влажности окружающей среды помещения, где проводятся испытания;
- средства автоматизированной обработки и преобразования перемещений в графические результаты испытаний;
- ручные измерительные инструменты линейных размеров испытуемых образцов.
- 8.2 Все средства измерения должны соответствовать требованиям нормативных документов  $^{1)}$ , действующих на территории государства участника Соглашения, принявшего настоящий стандарт, и проводить замеры деформаций с точностью не более 0.01 мм.

<sup>1)</sup> В Российской Федерации действует ГОСТ Р 8.674-2009 "Государственная система обеспечения

единства измерений. Общие требования к средствам измерений и техническим системам и устройствам с измерительными функциями".

8.3 Испытательные машины должны соответствовать требованиям ГОСТ 28840, иметь погрешность измерения нагрузки не более 1%.

Машины должны быть аттестованы согласно требованиям нормативных документов  $^{2)}$ , действующих на территории государства - участника Соглашения, принявшего настоящий стандарт.

\_\_\_\_\_

- 2) В Российской Федерации действует ГОСТ Р 8.568-2017 "Государственная система обеспечения единства измерений. Аттестация измерительного оборудования. Основные положения".
- 8.4 Средства автоматизированной обработки и преобразования перемещений должны соответствовать требованиям ГОСТ 26242.
- 8.5 Датчики силы и датчики перемещений с погрешностью не более  $\pm 1\%$  с периодической их поверкой согласно требованиям нормативных документов  $^{1)}$ , действующих на территории государства участника Соглашения, принявшего настоящий стандарт.

-----

- 1) В Российской Федерации действует ГОСТ Р 8.674-2009 "Государственная система обеспечения единства измерений. Общие требования к средствам измерений и техническим системам и устройствам с измерительными функциями".
- 8.6 В качестве средств измерения следует использовать:
- индикатор часового типа с ценой деления 0,01 по ГОСТ 577;
- влагомер для определения влажности древесины образцов с погрешностью не более ±2% с периодической их поверкой согласно требованиям нормативных документов 1), действующих на территории государства участника Соглашения, принявшего настоящий стандарт;

\_\_\_\_\_

- 1) В Российской Федерации действует ГОСТ Р 8.674-2009 "Государственная система обеспечения единства измерений. Общие требования к средствам измерений и техническим системам и устройствам с измерительными функциями".
- секундомер с точностью замера не более 1 с при их аттестации по требованиям нормативны документов  $^{3)}$ , действующих на территории государства участника Соглашения, принявшего настоящий стандарт;

\_\_\_\_\_

\_\_\_\_\_

<sup>3)</sup> В Российской Федерации действует ГОСТ Р 8.881-2015 "Государственная система обеспечения единства измерений. Влагомеры древесины и пиломатериалов. Методика поверки".

<sup>-</sup> приборы для измерения температуры и влажности воздуха, поверенные по системе поверки согласно требованиям нормативных документов  $^{4)}$ , действующих на территории государства - участника Соглашения, принявшего настоящий стандарт.

- 4) В Российской Федерации действует ГОСТ Р 8.558-2009 "Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений температуры".
- 8.7 В качестве ручного измерительного инструмента линейных размеров испытуемых образцов следует использовать, например:
- штангенциркуль по ГОСТ 166 с погрешностью измерения не более 0,1 мм;
- микрометр по ГОСТ 6507 с погрешностью измерения не более 0,01 мм;
- измерительную линейку с точностью измерения до 1 мм по ГОСТ 427;
- поверочный угольник 90° по ГОСТ 3749.
- 8.8 При испытаниях также следует использовать приспособления для зажима образцов и передач на них нагрузки для обеспечения неизменности и безопасности схемы проведения испытаний.

### 9 Порядок проведения испытаний

- 9.1 Порядок проведения испытаний зависит от выбранного метода испытаний согласн требованиям раздела 6.
- 9.2 При нагружении образца непрерывно или равными ступенями (см. рисунок Б.1) прикладывать нагрузку следует с постоянной скоростью в пределах от 2 до 10 мм/мин, величину ступени назначают от 0,08 до 0,10 ожидаемой величины разрушающего усилия  $N_{\rm max}$ , значение которог определяют пробными испытаниями до разрушения идентичных образцов соединений или расчетом.

Испытания с периодической разгрузкой для определения остаточной деформации в машинах, имеющих маятниковый силоизмеритель с демпфером, допускаются только при выключенно демпфере.

В процессе испытаний фиксируют значения нагрузок, показатели деформаций на каждой ступени (полной деформации  $d_{\Pi}$ и остаточной  $d_{0}$ , см. рисунок Б.З, а также разрушающую нагрузку  $N_{\max}$  и соответствующие ей деформации  $d_{\max}$ , текущее время и общую продолжительность испытаний  $t_{\max}$ .

При ручной записи деформаций по показаниям индикаторов следует дополнительно фиксироват время  $t_2$ , затраченное на съем показаний приборов [см. рисунок Б.16)].

- 9.3 Приборы для измерения осевых деформаций соединения (датчики, индикаторы) должны быть установлены симметрично с обеих сторон образца.
- 9.4 В процессе испытаний ступенчатой нагрузкой с разгрузкой (см. рисунок Б.2) в журнале испытаний (см. В.2) следует фиксировать: значения величины нагрузки на каждой ступени  $N_{\rm n}$ , разрушающую нагрузку  $N_{\rm max}$ , величины замера деформаций (см. рисунок Б.4), а также продолжительность времени возрастания нагрузки  $t_1$  на каждой ступени и общую продолжительность испытаний  $t_{\rm max}$  до момента разрушения образца.
- 9.5 Кроме фиксации вышеуказанных отсчетов в процессе испытаний проводят наблюдения (с записью в журнале) (см. приложение Г) за различными изменениями в образце (появление треска, трещин, смятия, перекосов и др.).

После разрушения образца описывают характер разрушения соединения.

Процесс испытаний и характер разрушения следует также фиксировать путем фотосъемки для приложения фотографий к отчету об испытаниях.

### 10 Обработка результатов испытаний

### 10.1 Определение деформаций соединений

10.1.1 По записанным в журнале испытаний показаниям приборов вычисляют:

- полные деформации и их разности при испытаниях с непрерывным приложением нагрузки;
- остаточные за цикл и упругие деформации при испытаниях с периодической разгрузкой.

По этим данным строят диаграммы зависимостей деформаций (см. Б.2) и определяют предел упругой работы соединений  $N_e$ . Для соединений, испытанных непрерывно возрастающей нагрузкой,  $N_e$  определяют из построенной диаграммы зависимости разностей полных деформаций  $\Delta d_{\rm II}$  от нагрузки N, а для соединений, испытанных ступенчатой нагрузкой с разгрузкой на каждой ступени, - из построенной диаграммы зависимости остаточных деформаций за цикл  $d_{\rm O}$  от упругой деформации  $d_{\rm V}$ .

10.1.2 Значение  $N_e$  определяют по диаграмме по точке отклонения изменения деформаций о линейной зависимости. Это значение учитывают при оценке несущей способности соединений группы II.

Упругие деформации соединений группы I определяют по пределу упругости по диаграмме деформаций при испытаниях непрерывно возрастающей нагрузкой.

## 10.2 Оценка несущей способности соединений с разрушением по деревянным элементам

10.2.1 Оценку несущей способности соединения проводят при использовании модели ее зависимости от длительности действия нагрузки согласно приложению В на основании сопоставления фактической (полученной при испытаниях) несущей способности  $T_{exp}$  с несущей способностью  $T_d$ , установленной на основании расчетов при проектировании соединения, в соответствии с неравенством

$$\frac{T_{exp}}{T_d} \ge 1. (1)$$

Несущая способность соединения  $T_{exp}$  устанавливается на основании разрушающей нагрузки  $N_{\max}$  , приведенной к неизменному действию непрерывно возрастающей нагрузки по формуле

$$T_{\rm exp} = \frac{N_{\rm max}}{k_t} \,, \, (2)$$

где  $k_t$ - коэффициент, учитывающий приведенное расчетное время действия нагрузки при испытании, определяемый по формуле

$$\int d^2 t d^2 t d^2 t d^2 t$$

$$k_t = 1.03 \left[ 1 - \frac{1}{17.1} \right], (3)$$

где  $t_{(u)}$ - продолжительность испытаний, приведенная к неизменному действию нагрузки, с, определяемая по формуле

$$t_{(u)} = \frac{t_{\text{max}}}{38.2}$$
, (4)

где  $t_{
m max}$  - время доведения нагрузки до разрушающей, с (см. Б.1).

При нагружении с периодической разгрузкой  $t_{
m max}$  определяют по формуле

$$t_{\text{max}} = n^2 t_n$$
, (5)

где n - число ступеней нагружения до разрушения;

 $t_n$ - продолжительность изменения усилия на величину одной ступени, с.

10.2.2 Расчетная несущая способность соединения  $T_{\rm pacq}$  соединения I группы устанавливается на основании несущей способности соединения  $T_{exp}$  по формуле

$$T_{\text{pac}^{\text{\tiny 4}}} = \frac{T_{exp}}{k_6} \text{, (6)}$$

где  $k_{6}$ - коэффициент безопасности соединения, учитывающий согласно приложению В ограниченное количество испытуемых образцов  $k_{v}$ и характер их разрушения  $k_{\mathrm{p}}$  определяемый по формуле

$$k_{\rm G} = k_{\rm v} k_{\rm p}$$
 , (7)

где  $k_{v}$ - коэффициент, учитывающий вероятностную составляющую испытаний (см. приложение В);

 $k_{
m p}$ - коэффициент, учитывающий характер разрушения (см. приложение В).

Для соединений II группы определение расчетной несущей способности следует выполнять по формуле (6) с дополнительной проверкой по неравенству

$$\frac{T_{\text{pac}^{\text{q}}}}{N_{c}} \le 1,15$$
 (8)

где  $N_e$ - нагрузка, соответствующая пределу упругой работы соединения.

При невыполнении неравенства (8) расчетная несущая способность соединения II группы снижается до величины 1,15  $N_e$ .

10.2.3 Расчетную несущую способность соединения  $T_{\mathrm{pacu}(\mathfrak{I})}$ для режимов нагружения Б-М  $\mathfrak{I})$ , учитывающих расчетное время действия эксплуатационных нагрузок, следует определять с учетом коэффициента длительной прочности  $m_{\mathrm{дл}}$  по формуле

$$T_{\mathrm{pacy}(9)}=T_{\mathrm{pacy}}m_{\mathrm{дл}}$$
 , (9)

где  $m_{\rm лл}$  - коэффициент длительной прочности.

Для нового типа соединения расчетная несущая способность  $T_{\mathrm{pacu}(\mathfrak{g})}$ , определяемая прочностью и деформативностью (с учетом ползучести), должна устанавливаться на основании коэффициента  $m_{\mathrm{дл}}$ , определяемого по результатам испытаний соединения при длительном действии нагрузки.

<sup>1)</sup> В Российской Федерации применяют режим нагружения "А" по СП 64.13330.2017 "Актуализированная редакция СНиП II-25-80 Деревянные конструкции" (таблица 4).

## 10.3 Оценка несущей способности соединений с разрушением по соединительным деталям и крепежным изделиям

10.3.1 Несущая способность испытанного соединения, определяемая прочностью и деформативностью стальных соединительных деталей и крепежных изделий  $^{1)}$ , устанавливается по формуле

\_\_\_\_\_

1) В Российской Федерации действует СП 16.13330.2017 "Актуализированная редакция СНиП II-23-81 Стальные конструкции" (раздел 6).

$$T_{\text{pacy}} = \frac{N_e}{\gamma_m} \le T_{\text{pacy}(9)}$$
, (10)

где  $N_e$ - нагрузка, соответствующая пределу упругой работы соединения;

 $\gamma_m$  - коэффициент надежности по материалу  $^{2)}$  ;

-----

2) В Российской Федерации действует СП 16.13330.2017 "Актуализированная редакция СНиП II-23-81 Стальные конструкции" (таблица 3).

 $T_{\mathrm{pacu}(9)}$  - расчетная несущая способность соединения, определяемая согласно 10.2.3.

10.3.2 При назначении стали для соединений следует учитывать требования нормативног документа  $^{3)}$ , действующего на территории государства - участника Соглашения, принявшего настоящий документ.

-----

3) В Российской Федерации действует СП 16.13330.2017 "Актуализированная редакция СНиП II-23-81 Стальные конструкции" (раздел 5, приложение В).

10.3.3 Для соединений с применением соединительных деталей и крепежных изделий не из стали, например из алюминия, стеклопластика и др., определение несущей способности должно выполняться по формуле (10) с учетом коэффициентов надежности для этих материалов.

## 10.4 Оценка жесткости и пластичности соединений по результатам испытаний

10.4.1 Коэффициент жесткости К в упругой зоне работы соединений определяется по формуле

$$K = \frac{N_{0,4} - N_{0,1}}{d_{0,4} - d_{0,1}}, (11)$$

где  $N_{0,1}$ и  $N_{0,4}$ - величины нагрузки, соответствующие уровню 10% и 40% от разрушающей нагрузки, соответственно;

 $d_{0,1}$ и  $d_{0,4}$ - величины деформаций, соответствующие уровню нагружения 10% и 40% о разрушающей нагрузки, соответственно.

10.4.2 Коэффициент пластичности Ддля соединений определяется по формуле

$$\mu = \frac{d_{\text{max}}}{d_{e}} , (12)$$

где  $d_e$ - величина деформации соединения, соответствующая пределу его упругой работы;

 $d_{\mathrm{max}}$ - величина деформации при разрушающей нагрузке.

### Приложение А

(обязательное)

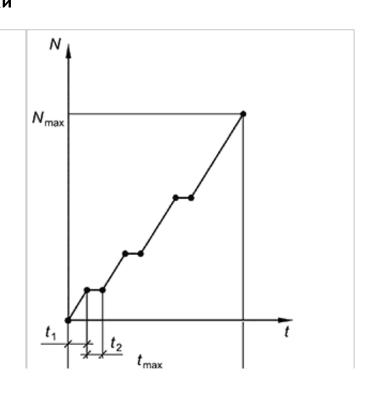
### Режимы нагружения соединений

Расчетную несущую способность соединения следует определять с учетом режима нагружения по таблице A.1, учитывающего расчетное время действия нагрузки.

Таблица А.1

| Обозначение режимов нагружения | Характеристика режимов нагружения                                                                                                                               | Приведенное расчетное время действия нагрузки,с | Коэффициент<br>длительной<br>прочности тдл |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|
| Α                              | Линейно возрастающая нагрузка при<br>стандартных машинных испытаниях                                                                                            | 1-10                                            | 1,0                                        |
| Б                              | Совместное действие постоянной и длительной временной нагрузок, напряжение от которых превышает 80% полного напряжения в элементах конструкций от всех нагрузок | <b>10</b> 8- <b>10</b> 9                        | 0,53                                       |
| В                              | Совместное действие постоянной, длительной временной нагрузок и нагрузок от людей на перекрытия жилых и общественных зданий                                     | 106-107                                         | 0,667                                      |
| Γ                              | Совместное действие постоянной и снеговой нагрузок                                                                                                              | <b>10</b> 6 <b>-10</b> 7                        | 0,667                                      |
| Д                              | Совместное действие постоянной и ветровой нагрузок или постоянной, снеговой и ветровой нагрузок                                                                 |                                                 | 0,8                                        |
| E                              | Совместное действие постоянной и монтажной нагрузок                                                                                                             | 103-104                                         | 0,8                                        |
| ж                              | Совместное действие постоянной и сейсмической нагрузок                                                                                                          | <b>10-10</b> <sup>2</sup>                       | 0,92                                       |

| И | Действие импульсных и ударных нагрузок                                                                                                                   | 10-1-10-8 | 1,1  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| K | Совместное действие постоянной и кратковременной снеговой нагрузок в условиях пожара                                                                     | 103-104   | 0,8  |
| Л | Для опор воздушных линий электропередачи - гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой и обрыва | 104-105   | 0,75 |
| М | Для опор воздушных линий электропередачи - при обрыве проводов и тросов                                                                                  |           | 1,0  |


Примечание - Для определения процентов от полного напряжения для режима Б рассматриваются расчетные нагрузки.

Приложение Б

(обязательное)

## Диаграммы приложения нагрузки и деформации соединений





| *                                       | *                           |
|-----------------------------------------|-----------------------------|
| а) Автоматизированная запись деформаций | б) Ручная запись деформаций |

Рисунок Б.1 - Диаграмма приложения на образец непрерывно возрастающей нагрузки

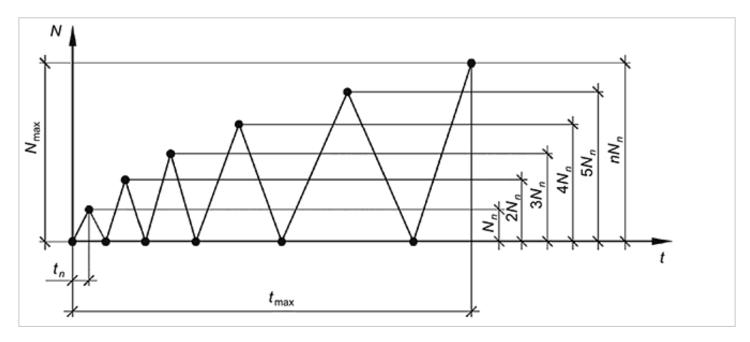



Рисунок Б.2 - Диаграмма ступенчатого приложения нагрузки на образец с разгрузкой

### Б.2 Диаграммы деформаций

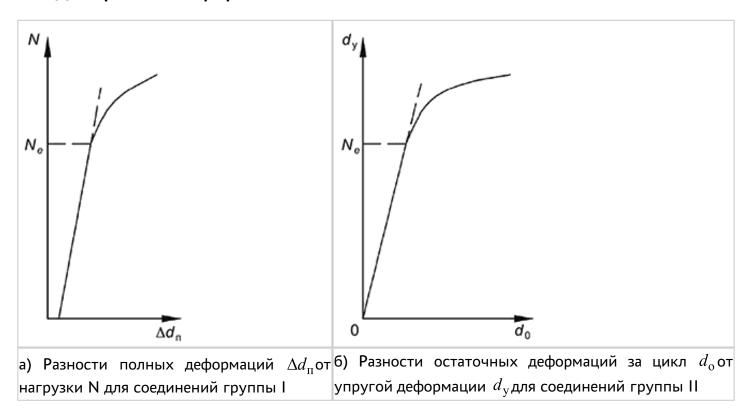
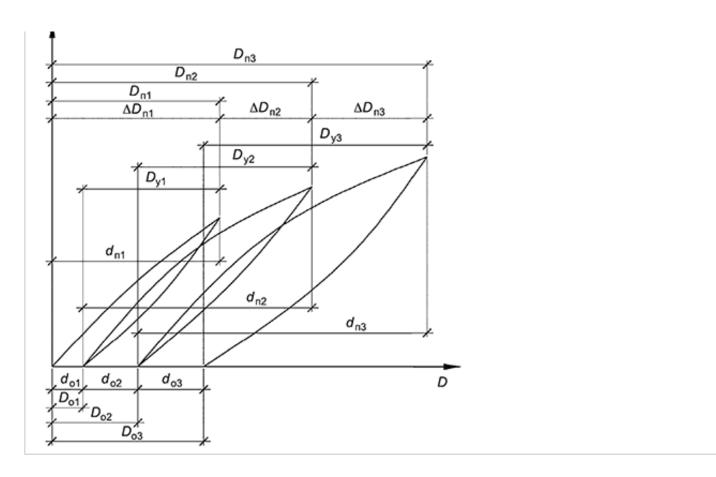



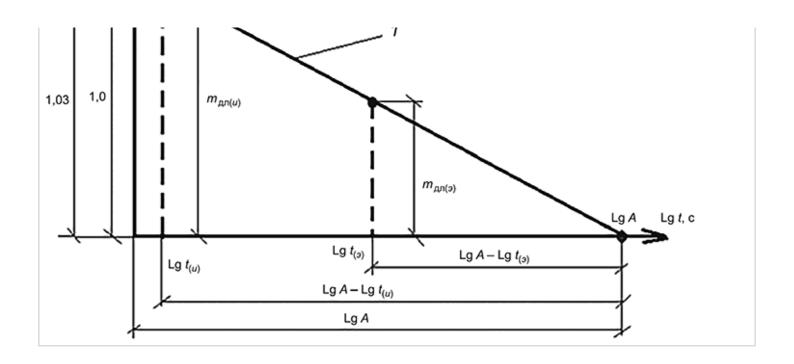

Рисунок Б.3 - Диаграмма зависимости деформаций



 $D_{
m o}$  - остаточные деформации;  $D_{
m y}$ - упругие деформации;  $\Delta D_{
m n}$ - разность полных деформаций;  $d_{
m o}$ - остаточные деформации за цикл;  $d_{
m n}$ - полные деформации за цикл

Рисунок Б.4 - Диаграмма деформаций соединения при периодической разгрузке

Приложение В


(обязательное)

### Учет продолжительности испытаний и определение коэффициента безопасности

### В.1 Учет продолжительности испытаний

В.1.1 Для обоснования влияния временного эффекта использован график длительной прочности древесины (см. рисунок В.1) и способ преобразования фактической продолжительности испытаний  $t_{\rm max}$  при различных диаграммах приложения испытательной нагрузки (см. приложение Б) к величине неизменно действующей постоянной нагрузки  $t_{(u)}$ . Эта величина определяется при непрерывно возрастающей нагрузке как  $t_{(u)} = t_{\rm max} / 38$ ,2, а при нагружении с периодическо разгрузкой - как  $t_{\rm max} = n^2 t_n$  (n - число ступеней нагружения до разрушения,  $t_n$  - продолжительность изменения усилия на величину одной ступени).





1 - прямая линия зависимости длительной прочности (нагрузки N) от времени t

Рисунок В.1 - График длительной прочности древесины в координатах Lg-N

В.1.2 Для определения несущей способности  $T_{exp}$  на основании разрушающей нагрузки  $N_{\max}$  следует определять коэффициент  $k_t$ , учитывающий приведенное расчетное время действия нагрузки при испытании

$$k_t = 1.03 \left( 1 - \frac{\lg t_{(u)}}{\lg A} \right)$$
, (B.1)

где t - приведенное расчетное время действия нагрузки, c;

 $\lg A$  , равное 17,1 и 1,03, - соответственно точки пересечения прямой осей абсцисс и ординат. Примечание -  $\lg A$  =17,1 справедливо для большинства основных видов напряженного состояния древесины, для напряженного состояния растяжения поперек волокон древесины  $\lg A$  =10.

Например, при продолжительности испытания соединения с непрерывно возрастающей нагрузко  $t_{\rm max}$  , равной 15 мин (900 c),  $t_{(u)}$ =900/38,2=23,56, величина  $k_t$ =1,03 (1 - Ig23,56/17,1)=0,95.

В.1.3 Оценку расчетной несущей способности соединений  $T_{\mathrm{pacu}(\mathfrak{I})}$  и влияние временного фактора ( $m_{\mathrm{дл}}$  - коэффициента длительной прочности древесины при приведенном расчетном времени действия эксплуатационной нагрузки) осуществляют на основе использования модели длительной прочности древесины с учетом [1], [2], выраженной уравнением прямой линии в полулогарифмических координатах Igt-T (см. рисунок В.1):

$$m_{\text{дл}} = 1,03 \left( 1 - \frac{\lg t_{(u)}}{\lg A} \right)$$
. (B2)

Например, для снеговой нагрузки с приведенной продолжительностью  $t_{\rm (cH)}$ =1209600 с (равной 14 дням или 1209600 с в году [2]), коэффициент длительной прочности составит:  $m_{\rm дл}$ =1,03(1-lg 1209600/17,1)=0,66.

В.1.4 Значения коэффициентов  $m_{\rm дл}$  для основных режимов нагружения приведены в приложении A.

### В.2 Определение коэффициента, учитывающего вероятностную

### составляющую коэффициента безопасности

B.2.1 В зависимости от количества испытанных образцов соединений для оценки их расчетной несущей способности  $T_{exp}$  следует учитывать вероятностную составляющую коэффициента безопасности посредством коэффициента  $k_{\nu}$ .

Его определяют по формуле с использованием наиболее употребляемого в статистике критерия Стьюдента

$$k_v = \frac{1}{(1 - tc_v)}$$
, (B.3)

где t - критерий Стьюдента, значение которого выбирают в зависимости от объема выборки для заданного уровня вероятности при нормальном распределении случайной величины по таблице B.1;

 $c_v$ - заданный или определяемый экспериментально коэффициент вариации.

Экспериментальные данные испытаний древесины и узловых соединений деревянных конструкций показывают, что процент вариации (изменчивости) испытанных выборок при пластическом характере разрушения составляет от 12% до 15%, т.е. среднее значени коэффициента вариации составит  $c_v$ =0,135.

Таблица В.1 - Зависимость t-критерия Стьюдента от объема выборки и уровня вероятности

| Объем<br>выборки n,<br>шт. | Значение t-<br>, критерия при<br>уровне вероятности |       | Объем<br>выборки n,<br>шт. | Значение t-<br>критерия при<br>уровне вероятности |       | Объем<br>выборки n,<br>шт. | Значение t-<br>критерия при<br>уровне вероятност |       |
|----------------------------|-----------------------------------------------------|-------|----------------------------|---------------------------------------------------|-------|----------------------------|--------------------------------------------------|-------|
|                            | 0,95                                                | 0,975 |                            | 0,95                                              | 0,975 |                            | 0,95                                             | 0,975 |
| 3                          | 2,920                                               | 4,303 | 13                         | 1,782                                             | 2,179 | 23                         | 1,717                                            | 2,074 |
| 4                          | 2,353                                               | 3,182 | 14                         | 1,771                                             | 2,160 | 24                         | 1,714                                            | 2,069 |
| 5                          | 2,132                                               | 2,776 | 15                         | 1,761                                             | 2,145 | 25                         | 1,711                                            | 2,064 |
| 6                          | 2,015                                               | 2,715 | 16                         | 1,753                                             | 2,131 | 26                         | 1,708                                            | 2,060 |
| 7                          | 1,943                                               | 2,447 | 17                         | 1,746                                             | 2,120 | 27                         | 1,705                                            | 2,059 |
| 8                          | 1,895                                               | 2,365 | 18                         | 1,740                                             | 2,110 | 28                         | 1,703                                            | 2,052 |
| 9                          | 1,860                                               | 2,306 | 19                         | 1,734                                             | 2,101 | 29                         | 1,701                                            | 2,048 |
|                            |                                                     |       |                            |                                                   |       |                            |                                                  |       |

| 10 | 1,833 | 2,262 | 20 | 1,729 | 2,093 | 30       | 1,699 | 2,045 |
|----|-------|-------|----|-------|-------|----------|-------|-------|
| 11 | 1,812 | 2,228 | 21 | 1,725 | 2,086 | 40       | 1,686 | 2,024 |
| 12 | 1,796 | 2,201 | 22 | 1,721 | 2,079 | $\infty$ | 1,645 | 1,96  |

#### Примечания

- 1 В таблице значения t-критерия Стьюдента установлены для случая одностороннего ограничения распределения выборки при ее объеме в зависимости от числа степеней свободы  $\gamma$  ( $n=\gamma+1$ ), т.к. определение прочности материала, несущей способности элементов конструкции необходимо осуществлять по минимально вероятностной границе статистического распределения, т.е. по левой ветви кривой нормального распределения.
- 2 Проводить статистическую обработку выборок объемом менее семи испытанных образцов не имеет практического смысла из-за низкой достоверности результатов в этой области кривой распределения.

### В.2.2 Для определения $k_{v}$ необходимо:

- при количестве испытанных образцов семь и более  $c_v$  принимать по результатам статистической обработки испытанной выборки, а t-критерий Стьюдента (см. таблицу B.1) в зависимости о фактически испытанного количества образцов (объема выборки) при уровне вероятности 0,95;
- при количестве испытанных образцов менее семи значение  $c_{\nu}$  принимают 0,135 (среднее при пластическом разрушении), а t-критерий Стьюдента (см. таблицу В.1) при повышении уровня вероятности до 0,975 как для количества шести образцов.

#### Пример

- 1 При экспериментально установленном  $\boldsymbol{c_v}$ =0,15 и критерии t=1,895 при количестве испытанных образцов n=8 величина  $\boldsymbol{k_v}$ будет равна  $\boldsymbol{k_v}$ =1/(1-1,895·0,15)=1,40.
- 2 При заданном  $\mathbf{c_v}$  =0,135 и критерии t=2,715 для количества образцов n≤6 величина  $\mathbf{k_v}$ буде равна  $\mathbf{k_v}$ =1/(1-2,715·0,135)=1,58.
- В.3 Определение коэффициента, учитывающего характер разрушения соединения
- В.3.1 Разрушение соединений может иметь пластический или хрупкий характер. Если после установленной величины деформаций  $d_e$ , соответствующей пределу упругой работы соединения, его разрушение происходит вскоре при деформациях  $d_{\rm max}$ <1,5  $d_e$ , то считают, что соединение имеет хрупкий характер разрушения. Это характерно для соединений, разрушающихся о скалывания, например клеевых соединений, соединений на врубках.
- Если после достижения  $d_e$ соединение продолжает деформироваться и разрушается при деформациях  $d_{\max}$ , существенно большей  $d_e$  ( $d_{\max}>4d_e$ ), то для него характерно пластическое разрушение (коэффициент пластичности  $\mu>4$ ), как, например, для соединений на деревянных цилиндрических и пластинчатых нагелях, на шпонках и вкладышах и т.п.
- В.3.2 Опыт испытания соединений деревянных конструкций показывает, что для хрупког разрушения характерна большая изменчивость результатов испытаний, чем для пластическог

разрушения, и составляет от 20% до 25%, т.е. среднее значение коэффициента вариации составит  $c_v$  =0,225.

Поэтому при оценке расчетной несущей способности соединений по величине  $N_{\rm max}$ , полученной по результатам испытаний малой выборки образцов (менее восьми штук), при определении коэффициента безопасности следует учитывать характер разрушения посредством коэффициента  $k_{\rm p}$ .

В.3.3 Для соединения с хрупким характером разрушения (коэффициент пластичности  $\mu$ <1,5) следует принимать  $k_{\rm p(xp)}$ =1,2, для соединения с пластическим характером разрушения (коэффициент пластичности  $\mu$ >4) -  $k_{\rm p(nn)}$ =1.

Величина коэффициента определена из отношения:

$$k_{\rm p} = \frac{\left(1 - tc_{\nu({\rm III})}\right)}{\left(1 - tc_{\nu({\rm Xp})}\right)} = \frac{\left(1 - 1,645 \cdot 0,135\right)}{\left(1 - 1,645 \cdot 0,225\right)} = 1,2$$
.

При коэффициенте пластичности соединения  $1,5 \le \mu \le 4$  коэффициент  $k_{\rm p}$  принимается по интерполяции.

В.3.4 При выборке образцов 7 шт. и более коэффициент  $k_{\rm p}$  принимается равным 1,0 (за счет учета коэффициента вариации  $c_{\rm v}$ , установленного на основании испытаний).

Приложение Г

(рекомендуемое)

### Формы журналов испытаний

## Г.1 Форма журнала и пример вычисления деформаций соединений при испытании непрерывно возрастающей нагрузкой

| Образец №                         | Характеристика соединения |
|-----------------------------------|---------------------------|
| Дата проведения испытаний: начало |                           |
| окончание                         |                           |
| Испытания проводил                |                           |
|                                   | (Ф.И.О., подпись)         |

| Nº   | Нагрузка, |        | ндикатор)<br>1  | Датчик (индикатор)<br>2 |                                                           | Д    | Примечания |  |
|------|-----------|--------|-----------------|-------------------------|-----------------------------------------------------------|------|------------|--|
| сту- | кгс       | отсчет | дефор-<br>мация | отсчет                  | отсчет $egin{array}{cccccccccccccccccccccccccccccccccccc$ |      |            |  |
| 0    | 20        | 795    | 0               | 618                     | 0                                                         | 0    | 0          |  |
| 1    | 180       | 735    | 60              | 555                     | 63                                                        | 61,5 | 0          |  |
| 2    | 340       | 640    | 155             | 475                     | 143                                                       | 149  | 87,5       |  |
| 3    | 500       | 495    | 300             | 360                     | 258                                                       | 279  | 130        |  |

# Г.2 Форма журнала и пример вычисления деформаций соединений при испытании ступенчатой нагрузкой с разгрузкой

| Образец №                         | Характеристика соединения |
|-----------------------------------|---------------------------|
| Дата проведения испытаний: начало |                           |
| окончание                         |                           |
| Испытания проводил                |                           |
|                                   | (Ф.И.О., подпись)         |

| Nº<br>cтy- | Наг- | Датчик<br>(индикатор) 1 |        | Датчик<br>(индикатор) 2 |        | Деформации |       |       |       |      |      | Приме- |
|------------|------|-------------------------|--------|-------------------------|--------|------------|-------|-------|-------|------|------|--------|
| пени       | кгс  | отс-                    | дефор- | отс-                    | дефор- | пол-       | оста- | оста- | упру- | пол- | раз- |        |

|   |     | чет | мация | чет | мация | ная $d_{\Pi}$ | ная $D_o$ | ная за цикл $d_o$ | гая $D_y$ | ная за<br>цикл $d_{\scriptscriptstyle \Pi}$ | пол-<br>ной $\Delta D_{\Pi}$ |  |
|---|-----|-----|-------|-----|-------|---------------|-----------|-------------------|-----------|---------------------------------------------|------------------------------|--|
| 0 | 20  | 795 | 0     | 618 | 0     | 0             | 0         | 0                 | 0         | 0                                           | 0                            |  |
| 1 | 180 | 735 | 60    | 555 | 63    | 61,5          | _         | -                 | -         | 61,5                                        | -                            |  |
|   | 20  | 770 | 25    | 600 | 18    | -             | 21,5      | 21,5              | 40        | -                                           | 21,5                         |  |
| 2 | 340 | 640 | 155   | 475 | 143   | 149           | -         | -                 | -         | 127,5                                       | 87,5                         |  |
|   | 20  | 750 | 45    | 578 | 40    | -             | 42,5      | 21                | 106,5     | -                                           | -                            |  |
| 3 | 500 | 495 | 300   | 360 | 258   | 279           | -         | -                 | -         | 236,5                                       | 130                          |  |
|   | 20  | 700 | 95    | 535 | 83    | -             | 89        | 46,5              | 190       | -                                           | -                            |  |

### Библиография

| [1] | Рекомендации по испытанию соединений деревянных конструкций/ЦНИИСК им.В.А.Кучеренко//под редакцией Ю.М.Иванова М.: Стройиздат, 1981 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| [2] | Рекомендации по испытанию деревянных конструкций/ЦНИИСК им.В.А.Кучеренко//под редакцией Ю.М.Иванова М.: Стройиздат, 1976            |

| УДК 624.011.1:006.354 |
|-----------------------|
|-----------------------|

Ключевые слова: узловое соединение деревянной конструкции, несущая способность узлового соединения, нагельное узловое соединение, упругая деформация соединения, остаточная деформация соединения